
Star polymers: study of fluid–fluid transitions in a system with a repulsive ultrasoft-core

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys.: Condens. Matter 15 1505

(http://iopscience.iop.org/0953-8984/15/10/301)

Download details:

IP Address: 171.66.16.119

The article was downloaded on 19/05/2010 at 06:39

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/15/10
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 15 (2003) 1505–1520 PII: S0953-8984(03)53626-8

Star polymers: study of fluid–fluid transitions in a
system with a repulsive ultrasoft-core

F Lo Verso1, M Tau2 and L Reatto1

1 Istituto Nazionale di Fisica della Materia and Dipartimento di Fisica, Universitá di Milano,
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Abstract
We study a model for star polymers in solution which, in addition to the
ultrasoft repulsive interaction of entropic origin, has an attractive interpolymer
interaction at longer range. This attraction can arise from a suitable tuning of
the solvent and solute properties.

For this model we study the phase diagram using mean-field theory and two
fluid-state theories, the modified hypernetted chain (MHNC) integral equation
and the hierarchical reference theory, and we explore star polymers with a
different number of arms f ( f = 12, 24, 32, 40). All three theories give the
same topology for the phase diagram in the presence of attraction. When the
strength of the interaction is strong enough a fluid–fluid phase transition appears
but the coexistence curve in the density–temperature (strength of attraction)
bifurcates at a triple point into two lines of coexistence terminating at two
critical points. This peculiar phase behaviour is related to the unusual form of
the repulsive contribution Vrep(r): at low density and in a semidilute regime
the soft-core Yukawa-like part of Vrep(r) is relevant, at higher densities the
logarithmic, ultrasoft part of Vrep(r) is the relevant one.

During our study we verify that the MHNC equation also gives a very
accurate description of correlations for systems with an ultrasoft-core potential.

1. Introduction

In the last decades theoretical and experimental interest in the structure, dynamics and
thermodynamical behaviour of colloidal suspensions has grown. To study such systems a
general approach is to trace out some of the degrees of freedom, like the ones of the solvent,
thus leaving an effective interaction between the remaining ones, those of the centre of mass of
the macroparticles. Very different colloidal solutions can actually be well synthesized whose
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interaction, tunable through experimental control of particle and solvent properties, can be
modelled by a simple, effective pair interaction V (r). V (r) is, in general, state dependent
and, in addition, its dependence on r can be rather different from the one typical of a simple
molecular system [1]. An example is the presence of a very deep and narrow attractive well
outside a repulsive core that one finds with the depletion interaction.

In more recent years it has been pointed out that the short range repulsive part of V (r)

can also be very different, or almost so, from the hard core which is present in simple atomic
systems. This is the case for the effective interaction between the centres of mass of two
macromolecules in a good solvent,as the case of dendrimers [2, 3] and of the linear polymers [4]
in which V (r) does not diverge at all at the origin but reaches a finite value that can be of the
order of the thermal energy.

Another relevant case is that of star polymers in a good solvent. Solutions of star polymers
have recently received attention both from the theoretical [5–8] and the experimental point of
view [9–12], as very soft colloidal particles. The mutual star–polymer interaction, in a good
solvent, is entropic in origin; V (r) diverges at small r , at least in some simple modelization
of the entropic interaction, but V (r) increases very slowly as the distance r between a pair of
star polymers decreases, that is in a logarithmic way. This potential has been called ultrasoft.
The strength of this interaction depends on the number f of arms of the star polymer, roughly
increasing as f 3/2 [5]. This system is an interesting example of a complex fluid for which the
phase diagram has special features arising from the ultrasoft nature of the effective interaction
V (r). In fact for f < 34 the system is fluid at all concentrations, whereas for f � 34 the
system is fluid at low and at large concentrations but crystalline phases appear at intermediate
concentrations [7]. Since V (r) has an entropic origin the system is athermal, i.e. the phase
diagram does not depend on temperature.

In a real solution of star polymers other interaction terms can be present in addition to
the previous entropic contribution. Some residual dispersion forces can be present thus giving
rise to interpolymer attraction and its intensity can be controlled by modifying the solvent. It
should be possible to induce attractive depletion forces by adding to the solution an additional
component of small size compared to the star polymer but large compared to the solvent
molecules. We might expect that when the intensity of these attractive forces is sufficiently
large, some sort of fluid–fluid phase transition will arise, similar to the liquid–vapour phase
transition in a simple fluid, but to what extent the phase diagram is modified by the presence of
the ultrasoft core is not known. It is the purpose of this paper to investigate the phase diagram
of a solution of star polymers with attraction, and search for the presence of fluid–fluid phase
transitions on the basis of different liquid state theories.

First we study the phase diagram by applying a mean-field theory. This is a very simple
scheme, yet it is useful in order to give some general insight into the phase behaviour concerning
the fluid–fluid phase transition. Second we apply the integral equation method which builds
the thermodynamic properties from the radial distribution function g(r).

In the case of the purely repulsive star–star interaction the Rogers–Young (RY)
equation [13] has been used with success [6]. However, in the case of simple fluids, it is
known that the RY equation is not as accurate as in the case of attractive forces [14, 15], so we
have adopted the modified hypernetted chain (MHNC) equation which is also accurate when
the attraction is present [16].

We tested the accuracy of the MHNC equation in the case of the purely repulsive ultrasoft
potential. Over the full range of density of interest our results show that the MHNC equation
is an excellent tool for studying this ultrasoft potential, and actually it is more accurate than
the RY equation. Then we introduced a simple model for the attractive contribution to the
effective interaction and we analysed the presence of such fluid–fluid transition with MHNC
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closure. As a third theory we used the hierarchical reference theory (HRT) [17, 18], which
incorporates in the liquid state theory the renormalization-group (RG) treatment of the critical
fluctuations.

All three theoretical approaches give the same topology for the phase diagram: if the
number of arms is not too large (we have investigated in detail f = 24 and 32), so that
no crystalline phases are present for the densities of interest, the system has two lines of
fluid–fluid phase transition with two critical points and a triple point. The coexistence line at
lower concentration is similar to the liquid–vapour transition in a simple fluid. The second
coexistence line is specific to this ultrasoft system and it is present in the region of large
concentration where there is a strong overlap of the stars. For a larger number of arms the low
density fluid–fluid transition persists but the second line of fluid–fluid transition is suppressed
by freezing for f � 50. In the intermediate range (34 � f � 50) the triple point is suppressed
by freezing whereas the two critical points persist. Our work is organized as follows: in
section 2 we study the system on the basis of mean field. In section 3 we introduce a specific
model for the attraction and the theories for correlations we are using (MHNC and HRT). The
results for the phase diagram and correlation functions are summarized in section 4. Section 5
contains our conclusions. In the appendix we apply MHNC to the case of the purely repulsive
interaction and we compare the results with simulation and with RY ones [6].

2. Introduction of the reference system and mean-field analysis

The effective pair interaction between star polymers with f arms in a good solvent is purely
repulsive and for f � 10 it reads as follows:

Vrep(r)
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σ is the corona diameter of the star and measures the extension of the star (Daoud–Cotton
model for the conformation of star polymers [19]). The value of σ depends on the number N
of monomers in a single arm. For very long chains and in good solvents it reads
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where m is the linear extension of a monomer and v denotes the excluded volume interaction
parameter which has the dimension of a volume.

This form of the interaction has been derived by scaling theory [5] for r < σ and for r > σ

it is a convenient analytical form which has been shown [12], for an ample range of f values, to
give a good description of small angle neutron scattering (SANS) results on concentrated star
polymer samples. This form is further confirmed by microscopic molecular dynamics (MD)
simulations of star polymers with up to f = 50. When f � 10 the Yukawa form equation (2)
is no longer accurate [20] but we do not study here stars with such a small number of arms.

This effective interaction is entropic in origin so that Vrep(r)/T is independent of the
temperature, i.e. the system is athermal. Vrep(r) diverges at r = 0 but it increases as r → 0
very slowly, in a logarithmic way, and for this reason it has been called an ultrasoft potential
to distinguish it from the potentials appropriate for atomic fluids.

In view of the studies described below we need to know the properties of the reference
system, i.e. the system interacting with V (r)rep. We have studied the thermodynamics and
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the structural properties relating to the fluid phase of star polymers solution modelled by pair
interaction (1), (2) with the MHNC equation. The thermodynamic quantities relevant to the
description of the phase behaviour can be deduced from a structural function which measures
the degree of correlation between pairs of particles as the radial distribution function g(r). In
particular we have used the isothermal compressibility as given by the structure factor S(q) at
q = 0 to construct the equation of state.

The MHNC integral equation is based on approximating the so-called bridge function
of a system with potential V (r) by the bridge function of the hard spheres fluid of suitable
diameter and a variational principle fixes this diameter [21]. It is known that the MHNC is
very accurate for a wide range of shapes of the interatomic potential V (r), and also when
V (r) has an attractive part. Recently the universality of the hard sphere bridge function has
been verified for a system of penetrable spheres and inferred for a bounded potential with high
penetrability [22].

We have verified that the MHNC equation gives a very accurate description of the
thermodynamicand of the correlation function of a system interacting with the potential (1), (2)
over all values of density and f values of our computations; the results of this study can be found
in the appendix. The MHNC follows accurately the result of the simulation and reproduces
the peculiar behaviour that the short range order, as measured by the height of the peaks of
g(r), first increases for increasing density ρ of the star polymers, but at a certain point there
is a changeover and correlations decrease for increasing density until a further changeover is
encountered at still larger values of ρ.

Over a large part of the density range the RY equation and the MHNC equation have
comparable accuracy and both give results in very good agreement with simulation. The
accuracy of the MHNC also remains very good in the ranges of density of strongest coupling
(this corresponds to the regions where the effective hard sphere packing fraction has a
maximum, see figure 5) where RY is not as accurate.

As mentioned in the introduction we should expect that under certain conditions the
effective interaction between two star polymers contains a additional contribution w(r) to be
added to the repulsive part Vrep(r) of equations (1) and (2):

Vtot (r) = Vrep(r) + w(r). (4)

We consider the case of an attractive w(r). This attraction could be due to a van der Waals
interaction arising from a nonperfect matching of the refraction index of the solvent and of the
polymer in such a way that this does not alter the basic configuration of the single star polymer.

Another source of attraction is a depletion interaction when in the solution a third
component is present which is large compared with the solvent molecules but small compared
with the star polymers. If the intensity of the attraction becomes large enough we should expect
the presence of a fluid–fluid transition. If w(r) is independent of temperature as we assume
here, this condition is achieved if the temperature is low enough. In the case where w(r) has an
entropic origin, so that w(r) is also proportional to T , it will be necessary to change some other
control parameter, such as depletant size and concentration, in order to increase the strength of
w(r) and reach the condition for a phase transition. In what follows we shall use temperature
as a control parameter.

First of all, to analyse and characterize the possibility of a fluid–fluid phase transition
we utilized a mean-field (MF) theory, a useful approximation in order to get at least a
qualitative picture of the phase diagram. For this purpose we have used the information
about thermodynamical properties of the reference system (the repulsive star–star interaction
Vrep) as found with the MHNC equation. Within MF the specific analytic form of w(r) does
not enter, only its integrated intensity. In fact within such approximation the free energy of a
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Table 1. Critical temperatures and densities for different f values for MF results. The last column
contains Tinst , the temperatures below which we found mechanical instability (see section 2).

f ρ∗
c1 T ∗

c1 ρ∗
c2 T ∗

c2 Tinst

40 0.046 0.6846 1.900 0.1970 0.1942
32 0.047 0.6722 1.960 0.2469 0.2422
24 0.050 0.6700 1.920 0.3267 0.3225
12 0.078 0.7463 1.400 0.6054 0.6050

system can be written as:

A

V
= fre f − ρ2a (5)

where fre f is the free energy density due to the repulsive part Vrep of the potential, ρ is the
number density of the macroparticles and

a = − 1
2

∫
w(r) dr. (6)

First we look for the presence of critical points, i.e. we search for solutions of the following
equations:

∂2 fre f

∂ρ2

∣∣∣∣
T =Tc

−2a = 0 (7)

∂3 fre f

∂ρ3

∣∣∣∣
T =Tc

= 0. (8)

The thermodynamics of the reference system is obtained via the compressibility relation which
can be written in the form(

∂2 fre f

∂ρ2

)
= 1

βρS(0, ρ)re f
(9)

where β = (kB T )−1∂3 fre f /∂ρ
3 is obtained by an additional density derivative of the right-hand

side of equation (9). In turns out that equation (8) has three solutions: two are significant, let
us call them ρ∗

c1 and ρ∗
c2, and the third is not significant because it corresponds to a temperature

for which, as we will see below, our model presents a mechanical instability. Note that in
the case of hard spheres, for instance, equation (8) has only one solution. ρ∗

c1 and ρ∗
c2 depend

on the number f of arms and table 1 contains the values of the critical densities for a few
values of f . We indicate with (∗) the reduced quantities of interest in our study (ρ∗ = ρσ 3,
T ∗ = kB T C−1 and, in the following, P∗ = PC−1, a∗ = aC−1σ−3, where C represents the
amplitude of the attractive contribution3, see next section). From equations (7) and (9) one
gets the critical temperature:

kB Tc = 2aρc S(0, ρc)re f . (10)

In figure 1 we show some of the isotherms around the two critical temperatures for f = 32.
We note, around the critical densities, a plateau corresponding to T ∗

c1 and T ∗
c2 and we see the

typical van der Waals loop for T ∗ < T ∗
c1 and T ∗ < T ∗

c2. The spinodal curves are obtained as
the loci of vanishing ∂2 fre f /∂ρ

2 and are shown in figure 2 for f = 32. In order to determine
the coexistence pressure we studied the behaviour of the reduced chemical potential versus P∗
for T ∗ < T ∗

c1 and T ∗ < T ∗
c2. The intersection between the high and low density branches of

3 In our specific case the attractive contribution is w(r) = −C (exp[(r − A)/B] + 1)−1.
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Figure 1. (a) Reduced pressure P∗ = PC−1 versus reduced density ρ∗ = ρσ 3 for a potential
with a repulsive ultrasoft core ( f = 32). Long dashed curve, solid curve, dot–dashed curve stand
for the supercritical (T ∗ = 0.7167), critical (T ∗ = T ∗

c1 = 0.6722) and subcritical (T ∗ = 0.6425)
isotherm respectively. The data has been obtained through a mean-field calculation. (b) Same as
(a) but the isotherms and the density region investigated are around T ∗ = T ∗

c2 = 0.2469 (solid
curve) and ρ∗ = ρ∗

c2 respectively. Long dashed curve and dot–dashed curve stand for T ∗ = 0.2484
and 0.2461 respectively.

the curve for fixed T ∗, verifies the condition of thermal, mechanical and chemical equilibrium
between the two coexisting phases and the results for f = 32 and 24 are shown in figures 3
and 4 respectively. It should be noticed that for f = 24 the second critical point is metastable.
This point, and the relative region of coexistence of phase, fall below the coexistence curve
corresponding to the low density critical point. These results will be modified with the more
accurate HRT study of the next section which gives two phase transitions corresponding to
stable states.

It should be noted that our model has a mechanical instability toward collapse at a low
enough temperature. Such behaviour can be understood by writing the reduced pressure in the
form

P∗ = T ∗
∫ ρ∗

dρ∗

S(0, ρ∗)re f
− a∗ρ∗2 (11)

and therefore analysing the behaviour of S(0, ρ∗)re f as function of the reduced density4. In a
model with strong repulsion at short distances, as appropriate for fluids of simple atoms, the
inverse compressibility S(0, ρ)−1 increases very rapidly for increasing density so that, at any

4 We studied the behaviour of S(0, ρ∗)re f versus ρ∗ for different values of the chains number.
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Figure 2. The spinodal curve (reduced temperature T ∗ = kB T/C versus reduced density
ρ∗ = ρσ 3) as obtained from the MHNC approximation (squares) and numerical-MF calculation
(circles) for f = 32, A = 2.1σ and B = 0.35σ (equation (12)). Main figure: low density spinodal
curve and a small portion of the area around the high density critical point. Inset: high density
spinodal curve; the MF curve has been drawn up to the temperature for which the pressure versus
the density has physical meaning (see equation (11)). Curves are simply a guide to the eye.

finite temperature, the first contribution to the pressure in equation (11) dominates over the
second contribution when the density is large enough so that the overall pressure is positive.
The situation is different for the ultrasoft potential. S(0, ρ)−1 also increases in this case
for increasing density, but much more slowly. The MHNC results show that [S(0, ρ∗)re f ]−1

increases approximately as the first power of ρ∗ when ρ∗ � 1. Therefore the contribution of
the repulsive forces to the pressure also increases as ρ∗2. As a consequence there is a value
Tinst below which the pressure becomes negative and decreases with no bound as ρ∗ increases.
The value of Tinst depends on f and it is given in table 1.

Our analysis obtained with the MHNC equation confirms that star polymers belong to the
class of the ‘weak mean-field fluids’, the thermodynamics of which can be accurately described
by mean-field theory [23, 24]. According to our MHNC calculation in this high density limit,
for f � 40 the coefficient of proportionality between ρ∗ and [S(0, ρ∗)re f ]−1 differs from the
mean-field value (β

∫
V (r) dr) by less than 1%.

In summary, MF gives two lines of fluid–fluid phase transition, and the lines end at two
critical points and have a triple point. However for f = 24 the triple point disappears since
the second transition line turns out to be metastable with respect to a transition between a
high density fluid and a diluted one. So only the first low density critical point is stable while
the second one is metastable. The coexistence line at low density is similar to the standard
liquid–vapour phase transition in the sense that the average distance between neighbouring
particles is well above the characteristic size σ of the particles. The second branch is peculiar
to this ultrasoft potential and, in fact, the densities of the coexisting phases are such that there is
a strong overlap of the star polymers. The ratio of the two critical temperatures depends on f ,
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Figure 3. Coexistence curve ( f = 32, A = 2.1σ , B = 0.35σ ): MF theory (circles) and HRT
theory (squares) (reduced temperature T ∗ = kB T/C versus reduced density ρ∗ = ρσ 3). The
insets show the high density coexistence curve (bottom) and the low density one (top). Curves are
simply a guide to the eye.

it is above 3 when f = 40 but is only 1.2 for f = 12. Similarly the critical densities are far
apart for large f and they are closer for smaller f values. An additional feature of the second
line of fluid–fluid phase transition is that its temperature range is quite narrow; Tc2 is above
the temperature of the triple point by less than 1% ( f = 32). This range increases on the
basis of more advanced theories (see the next section) but in any case it remains quite narrow.
The second critical point takes place at a density where strong short range correlations are
present. We have to worry then about the possible occurrence of the freezing transition. We
argue that the freezing transition is not significantly modified by the presence of the attractive
forces. In fact, as discussed in the next section, it turns out that these attractive forces have a
minor effect on the amount of short range order in the fluid phase at the large value of density
of interest. Therefore we can assume that freezing is not affected by w(r). For f � 32 no
freezing transition is present so that the lines of phase transitions represent stable states. For
f � 50 all the density region from the triple point to the high density critical point is covered
by crystalline phases so that only the low density critical point survives as a stable state and
the second critical point could only be present as a metastable state. In the intermediate region
34 � f � 50 crystalline phases are present in a limited range of density which is located
around the density of the triple point. Therefore both lines of fluid–fluid transitions and their
critical points persist as stable states and only part of the coexistence curves around the triple
point is pre-empted by crystallization. It would be useful to perform some simulation study
in order to confirm this scenario based on the assumption that freezing is not affected at all
by w(r).
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Figure 4. Coexistence curve ( f = 24, A = 2.1σ , B = 0.35σ ): MF theory (circles) and HRT
theory (squares) (reduced temperature T ∗ = kB T/C versus reduced density ρ∗ = ρσ 3). Inset:
magnifications of the high density coexistence region. We also show the MF high density curve
which is metastable. Lines are simply a guide to the eye.

3. MHNC and HRT analysis

In order to obtain a more precise quantitative description of the phase diagram we have to
develop a theory of correlation in the presence of the total potential. In order to do so we have
to specify the form of the attractive part w(r) of the potential. As discussed in the previous
section, different physical mechanisms can be at the origin of the attraction. Here we are not
interested in the study of one specific mechanism, but in the study of the generic features of
the phase diagram so that we can use a simplified model for the attraction. We could use a
square well for w(r) but Vtot would again become repulsive at large r due to the Yukawa form
of Vrep. We have decided to assume for w(r) the functional form of a Fermi distribution, i.e.

w(r) = − C

exp
[

r−A
B

]
+ 1

. (12)

The parameters A and B control the position and the width of the well potential and C its
amplitude. By a suitable choice of these parameters one can guarantee that Vtot(r) does not
have a subsidiary maximum at large r .

As a first theory of the correlation we have used the integral MHNC equation as described in
the previous section for the reference system but now the full potential Vtot(r) = Vrep(r)+w(r)

enters into the equation. As in the case of model potentials with attraction for atomic fluids
we find that for a given ρ, the MHNC does not converge below a certain temperature Tsing(ρ)

and in its neighbourhood the isothermal compressibility has a sharp increase. This locus is
assimilated to the spinodal line and the maximum of Tsing(ρ) as function of ρ represents a
critical point. The computation of the coexistence line with the MHNC is very tedious and we
have not done it.



1514 F Lo Verso et al

0 1 2 3 4 5
η

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

ηHS

0.015 0.065 0.115 0.165
0.0

0.1

0.2

0.3

0.4

Figure 5. Effective packing fraction ηH S as a function of η for different values of the number
of chains: dot–dashed curve, dashed curve, dotted curve, solid curve are f = 12, 24, 32, 40
respectively. The maxima are around the values of η for which there is a re-entrant loss of the
spatial ordering of the stars. Inset: magnification of the small density region.

As a second theory of correlations we have used the HRT of fluids. This has proven to be
a very accurate theory of the liquid–vapour phase transition for model interaction appropriate
for atomic fluids, and it is the only theory of liquids with the qualitatively correct description of
criticality. In fact HRT is a powerful scheme able to keep information on all length scales and
to recover the RG results in the appropriate regime, while also describing accurately the short
range correlations. In this scheme the attractive contribution to the interaction is introduced
selectivity in wavevector space starting from the Fourier components of shortest wavelength.
The corresponding evolution of the free energy and of the correlation functions as a function
of the cut-off wavevector is described by an exact hierarchy of integro-differential equations
of growing order [18]. In the implementation which has been widely used, the hierarchy
is truncated at the first equation by supplementing this first equation with an approximate
closure for the two-body correlation function of the partially coupled system embodying a
thermodynamic consistency condition. It is important to note that the HRT also preserves the
correct convexity of the free energy below the critical temperature. In this case the region of
phase coexistence is directly obtained from the computation as a flat portion of the isotherm
in the pressure–density plane.

HRT truncated to the first equation leads to a partial differential equation in density and,
in the cut-off wavevector, also leads to solving Q for a given temperature. The theory needs as
an input the chemical potential and the structure factor of the reference system, i.e. the system
with interaction Vrep(r) and these properties has been obtained by the MHNC equation as
described in the appendix. HRT has been described in detail that we do not report here and
the numerical procedure is the same as in [25] in which a version (HRT-SMSA) of the HRT
suitable for soft-core systems has been introduced. The only specific aspect of the present
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computation is the much larger range of densities in which the equation is integrated, up to
ρσ 3 � 7 where as a boundary condition the random phase approximation (RPA) is used.

4. Results

With the MHNC we have studied in detail the phase diagram of our model of star polymers
in solution with attraction for two values of f , f = 32 and 24. For the attraction w(r) we
have used the parameters A = 2.1σ and B = 0.35σ . With such values of the parameters the
shape of Vtot(r) is very close to Vrep(r) for r < σ apart from a shift −C and Vtot(r) displays
an attractive well which is centred around r = 2σ . The MHNC equation in the region of
low density gives a critical point not far from the mean-field value both in temperature and in
density. As in the case of a Lennard-Jones potential, MF overestimates the critical temperature
compared to the MHNC and the deviation is larger in the case f = 32. The spinodal curve
given by the MHNC is plotted in figure 2 together with the spinodal curve given by MF. There is
an overall agreement, the spinodal being quite asymmetric and skewed toward large densities.
In both approximations the spinodal reaches a minimum for a density ρ∗ � 1 and at larger
densities there is a very shallow maximum at density ρ∗ � 2. At such high densities MF and
the MHNC give very similar results, as might be expected, since many particles fall within the
range of the forces. Thus the MHNC confirms the results of MF in the presence of a second
critical point at high density. Similar conclusions are reached when f = 24. The critical
temperature and density of the low density critical point has a weak dependence on the value
of f whereas the critical temperature of the high density critical point has a strong dependence
on f , Tc2 being lower for the larger f .

We now discuss the results given by HRT. In this case the theory gives directly the curves
of coexisting phases and the result for f = 32 is compared to the MF result in figure 3. The
effect of fluctuations as embodied in HRT has the effect of depressing the value of Tc1 both
with respect to the MF and to the MHNC result. At the same time ρc1 is displaced to larger
value, with an increment of the order of 50% of the MF value (see table 2). Also with HRT
one finds the second branch of fluid–fluid coexistence and a second critical point. The two
coexistence curves for this second phase transition given by HRT and MF are very close to
each other. On the other hand there is a significant difference in the region of the triple point.
For f = 32 the temperature of the triple point is below Tc2 by only 0.5% in the case of MF
whereas it reaches 2% in the case of HRT. The difference is even more pronounced for f = 24.
As already noted, in this case the second critical point in MF turns out to be metastable with
respect to a transition which connects directly the low density branch of the first critical point
and the high density branch. Therefore in this case there is no triple point at all in MF. This
is not the case with HRT which gives a stable second critical point and a triple point, similar
to the result for f = 32 but with a reduced range of the dip, the temperature of the triple
point being 1.2% below Tc2. The smaller disparity between Tc1 and Tc2 should also be noted,
Tc1/Tc2 is equal to 1.88 for f = 24 and 2.48 for f = 32.

In a plot like that of figures 3 and 4 the coexistence curves given by MF and HRT
look similar with only quantitative differences. It should be noted, however, that this is not
completely true. Close to the critical temperatures the HRT curve is governed by a non-classical
critical exponent β = 0.345 [18] whereas MF has the classical value β = 1/2 for the shape
of the coexistence curve.

In summary all three theories give the same topology for the phase diagram with two
critical points and a triple point and only minor quantitative differences are present. This
peculiar behaviour is due to the ultrasoft logarithmic behaviour for r < σ . Some computation
with a different set of values for the potential parameters A and B shows that the basic features
of the phase diagram are not changed.
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Table 2. Critical temperatures and densities for f = 24, 32 and parameters A = 2.1σ and
B = 0.35σ .

ρ∗
c1 T ∗

c1 ρ∗
c2 T ∗

c2 ρtriple Ttriple

f = 32
MF 0.047 0.6722 1.960 0.2469 1.210 0.2460
MHNC 0.062 0.6230 1.960 0.2470
HRT-SMSA 0.074 0.6123 1.952 0.2471 0.975 0.2426

f = 24

MF 0.050 0.6700 1.920 0.3267
MHNC 0.055 0.6600 1.900 0.327
HRT-SMSA 0.084 0.6143 1.930 0.3268 0.986 0.3230

With respect to correlations we find that the effect of the attractive part w(r) on the static
structure factor S(q) is significant in the small q region, the region of q where there is a direct
link of S(q) with the thermodynamics via the compressibility relation. At larger q values
where S(q) is a measure of the amount of short range order the effect of w(r) is very small in
the range of density of the phase transition.

5. Conclusions

We have studied a model of a fluid with a logarithmic repulsive interaction at short range and
attractive forces at larger range. This interaction can model a solution of star polymers when
dispersion forces are also relevant or depletion forces are present due to a third component. All
three theories we have used (MF, MHNC and HRT) give qualitatively similar results: when
the attraction becomes large enough two phase regions appear in the phase diagram but the
peculiarity is that the line of first order phase transition bifurcates at a triple point into two lines
terminating at two critical points. One of the critical points is at low density whereas the other
is at large density where there is a strong overlap of the polymers. This second critical point
is at a lower temperature than the first one. Only if the number of arms of the star polymer is
less than 50 does this second branch correspond to a stable phase, otherwise it is pre-empted
by a freezing transition. The low density branch of transition is rather similar to the standard
liquid–vapour transition of a simple atomic fluid and it corresponds to a demodulate regime for
the polymer solution. The high density branch on the other hand is specific to this model and it
corresponds to a high concentration regime where there is a strong overlap of the star polymers.
In this regime the basic role is played by the logarithmic part of the repulsive interaction and
the effect of attraction in giving a second critical point is well represented by a mean-field
contribution. Note, however, that the prediction of MF deviates significantly from the result
of the RG liquid state theory HRT in the region of the triple point.

We note that other studies [26–28] have shown the existence of two critical points for
models with a hard-core potential plus a soft repulsive shoulder and a long range attraction, an
interaction advocated to be relevant for some simple atomic fluids. However for these models
at most one of the two critical points turns out to be stable with respect to freezing.

At the high density of the second fluid–fluid transition one should worry about the possible
presence of a glass transition. We have not investigated this possibility but this is a line of
research well worth pursuing.
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Appendix. Integral equation for the radial distribution function

We have used the MHNC integral equation to compute the structure of star polymers solution
in a good solvent modelled by the interatomic interaction Vrep(r) equations (1) and (2). The
MHNC equation starts from an exact relation [29], obtained from a cluster expansion, which
connects the radial distribution function (rdf) g(r) to the interparticle potential V (r):

g(r) = exp[−βV (r) + h(r) − c(r) + E(r)] (13)

where h(r) = g(r) − 1 and c(r) are the pair and the direct correlation function respectively.
c(r) is related to h(r) by the Ornstein–Zernike equation

h(r) = c(r) + ρ

∫
c(|r − r′|)h(r′) dr′. (14)

E(r), called the bridge function, represents a sum of an infinite number of terms, the so-called
elementary graphs in the diagrammatic analysis of the two-points function. The exact bridge
function is not known for any system, equations (13) and (14) do not form a closed set of
equations for a given V (r) unless a closure is introduced for the bridge function.

In the MHNC scheme the bridge function of the system with potential V (r) is replaced
by the bridge function of a fluid of hard spheres of suitable diameter d . For hard spheres the
correlations functions do not depend on the temperature but only on r/d and reduced density
which can be expressed conveniently in term of the packing fraction ηH S = (π/6)ρd3. As
diameter d of hard spheres we use the value determined by the so-called Lado criterion [21],
i.e. the following equation must be satisfied∫

dr[g(r) − gH S(r, ηH S)]
∂ EH S(r, ηH S)

∂ηH S
= 0. (15)

This corresponds to the minimization of the Helmohtz free energy. As a bridge function of hard
spheres we use the one deduced from equation (13) when the Verlet–Weis parameterization
for gH S is used [30]. This, together with equations (13)–(15), gives a closed set of equations
which are solved by a standard iterative method.

When as the potential we use only the repulsive equations (1) and (2), the system under
study is athermal, i.e. βVrep(r) does not depend on the temperature,so that the effective packing
fraction ηH S entering into the bridge function does not depend on the temperature, but only on
the functionality f of the star polymers and on the packing fraction η = (π/6)ρσ 3, defined
in terms of the diameter σ of the corona of the star polymer. It turns out that for any value of
η equation (15) has a unique solution for ηH S.

The dependence of ηH S on the density as determined by equation (15) is peculiar (figure 5)
and it reflects the features of the interparticle interaction. At low density ηH S is small and it
increases rather quickly with the packing fraction. This reflects the fact that at these densities
only the Yukawa part of Vrep(r) (equation (2)) is relevant so that the system behaves like a
standard soft core fluid. As η increases the rate of increase of ηH S diminishes until ηH S reaches
a maximum (this happens for example, at η � 0.44 for f = 32) as defined in section 1. Beyond
such densities equation (1), is the relevant one. The ultrasoft character of the potential at short
distances allows for a strong interpenetration between macroparticles, the amount of short
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Figure A.1. (a) Comparison between the rdf obtained from the MC simulation (solid curve) and
the MHNC (circles) and RY (dashed curve) closures for f = 32 and η = 0.60 (g(r) versus reduced
distance r/σ ). (b) Comparison between the structure factors obtained from the MC simulation and
the MHNC and RY closures for η = 0.60 (S(q) versus qσ ). In both cases the inset shows a detail
of the main figure.

range order diminishes and the effective HS diameter of the bridge function decreases as the
density increases. At still larger packing fractions there is a turn over and a new maximum
of ηH S at η � 3.1 for f = 32. Beyond this value the dominant peak of S(k) (which was the
second peak at small densities) begins to decrease, testifying to a re-entrant loss of the spatial
ordering of the stars. A similar non-monotonic dependence of ηH S on η is common to other
values of f .

Considering the evolution of the height of the main peak of g(r), when the density varies,
we have seen that this evolution follows the anomalous one of the structure factor main peak.

For this system extensive simulation results are available [6] and we find that there is
an excellent agreement with the MHNC results. For most of the densities g(r) and S(q) are
essentially indistinguishable from the simulation results and are not shown here. Some small
deviations are present in the region of strongest coupling, i.e. in the density regions where ηH S

has a maximum. As an example the results for f = 32 and for two densities in these regions,
η = 0.60 and 3.14, are shown in figures A.1 and A.2. One can also appreciate that in these
regions the MHNC is quite accurate.

Another integral equation has been used to study the correlations for this model system,
the RY equation. For most density values this equation also reproduces the simulation data
very well at the level of the MHNC. However in certain density ranges significant deviations
from simulation are present. For f = 32 this happens at 0.2 � η < 0.8 and in the region
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Figure A.2. (a) Comparison between the radial distribution functions obtained from MC simulation
(solid curve) and the MHNC (circles) and RY (dashed curve) closures for f = 32 and η = 3.14
(g(r) versus r/σ ). (b) Comparison between the structure factors obtained from MC simulation and
the MHNC and RY closure η = 3.14 (S(q) versus qσ ). The density is near the value for which the
first peak has completely disappeared and the second peak is the main one. In both cases the inset
shows a detail of the main figure.

around η = 3, the density ranges of strongest coupling. Also the RY results are plotted
in figures A.1 and A.2 and one can appreciate the improvement that the MHNC represents
compared to RY. We conclude that the MHNC is also very accurate for ultrasoft repulsive
interactions and this gives additional evidence for the universality of the bridge function. The
MHNC results for Vrep(r) has been used to obtain the equation of state by integrating over
density the compressibility given by S(0) and this appears in the MF analysis of section 2.
The same MHNC results have also been used as an initial condition in the HRT computation
of section 3.
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